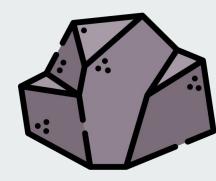
Speech Foundation Models

語音基石模型

2023/05/12 張凱爲

kaiwei.chang.tw@gmail.com



Speech Foundation Models

Part 1

Speech Representation Learning

- 1. SSL Models
- Representation benchmarking

Part 2

Speech
Large Language Models

- 1. Textless NLP
- 2. AudioLM
- 3. VALL-E

Part 3

Other Speech Foundation Models

- 1. OpenAl Whisper
- 2. Google USM

Speech Recognition Speaker identification Downstream Models

Self-supervised Learning Model

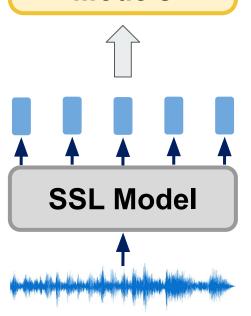
Speech

Speech Representation Learning

Part 1

1. SSL Models

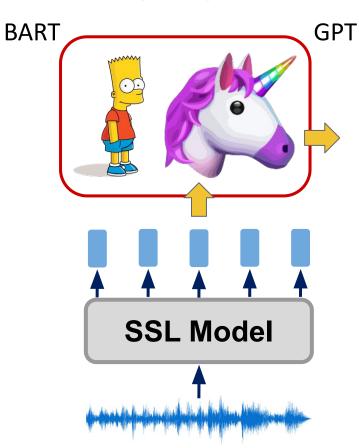
2. Representation benchmarking



Part 2

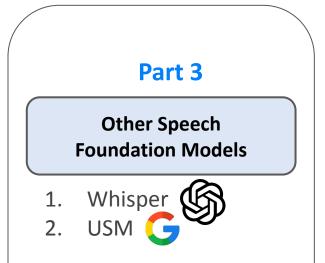
Speech
Large Language Models

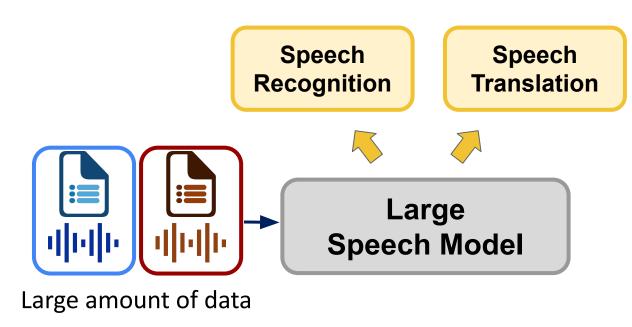
- 1. Textless NLP 🚫
- 2. AudioLM 🧲
- 3. VALL-E



Speech Continuation

Speech Translation





Speech Foundation Models

Part 1

Speech Representation Learning

- 1. SSL Models
- Representation benchmarking

Part 2

Speech Large Language Models

- 1. Textless NLP
- 2. AudioLM
- 3. Regeneration Framework

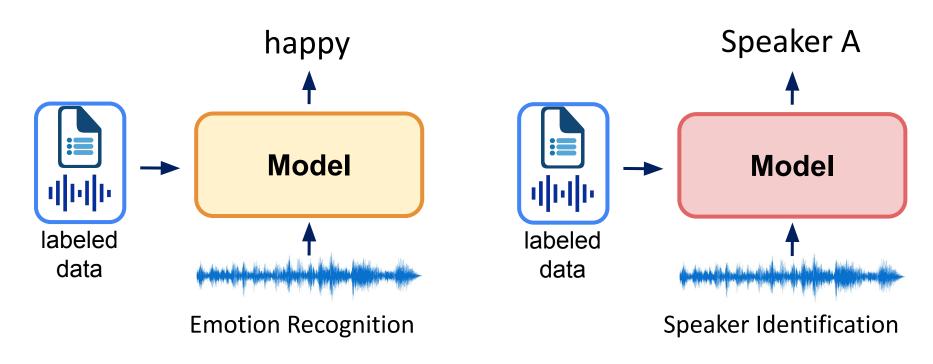
Part 3

Other Speech Foundation Models

- 1. Whisper
- 2. USM

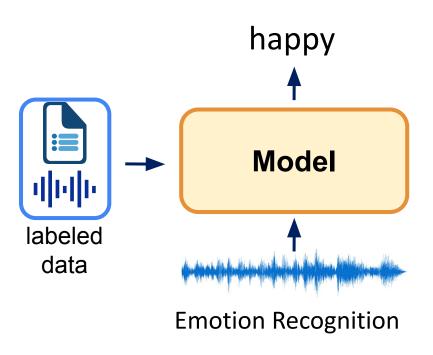
Speech Representation Learning

Why speech representation learning?



Speech Representation Learning

Why speech representation learning?

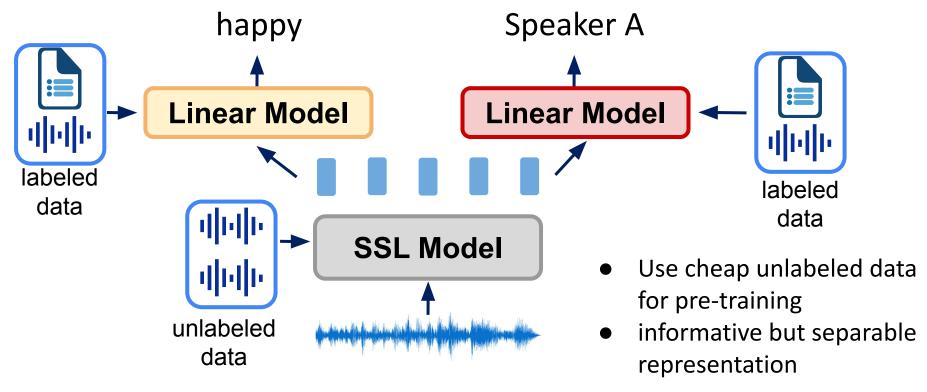


Fully supervised learning

- labeled data is expensive
- Train a new model for each task

Speech Representation Learning

Why speech representation learning?



Speech Foundation Models

Part 1

Speech Representation Learning

- 1. SSL Models
- 2. Representation benchmarking

Part 2

Speech
Large Language Models

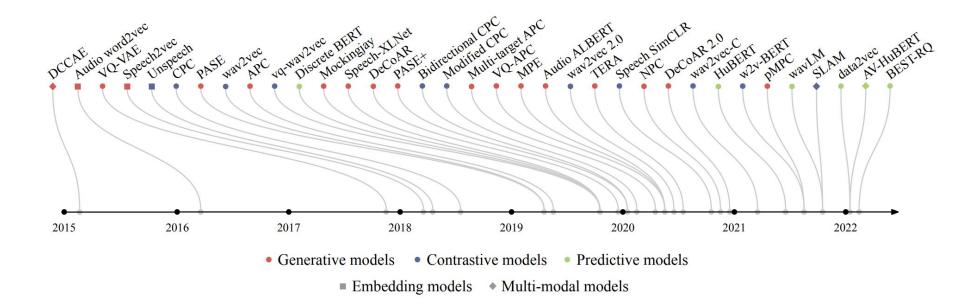
- 1. Textless NLP
- 2. AudioLM
- 3. Regeneration Framework

Part 3

Other Speech
Foundation Models

- 1. Whisper
- 2. USM

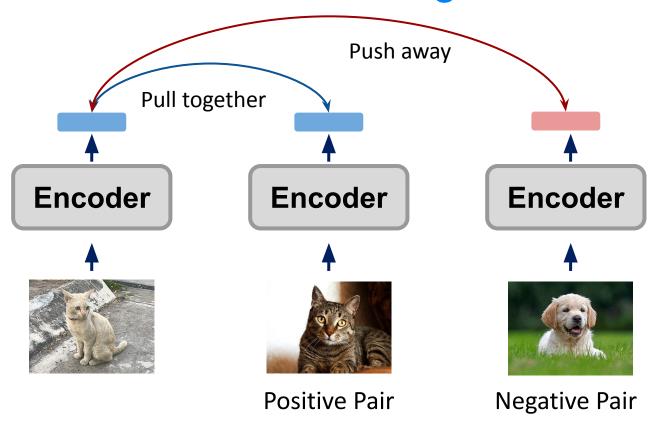
Self-Supervised Speech Representation Learning



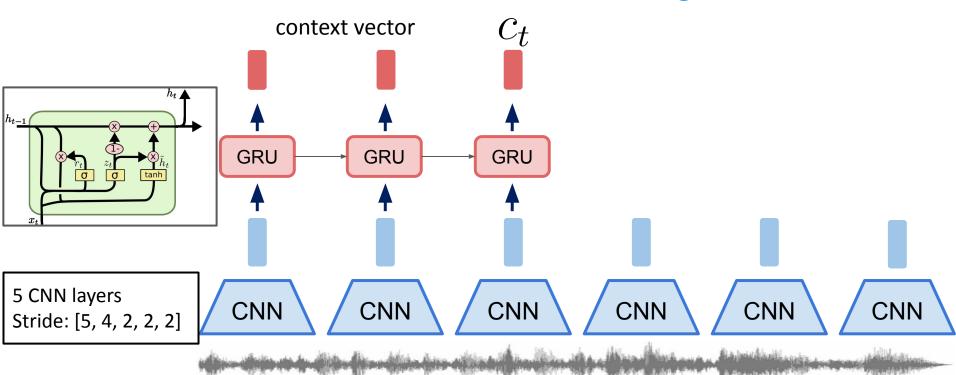
CPC HuBERT WavLM wav2vec 2.0 **BEST-RQ** XLS-R **Contrastive Models Predictive Models**

CPC HuBERT WavLM wav2vec 2.0 **BEST-RQ** XLS-R **Contrastive Models** Predictive Models

Contrastive Learning: Intuition



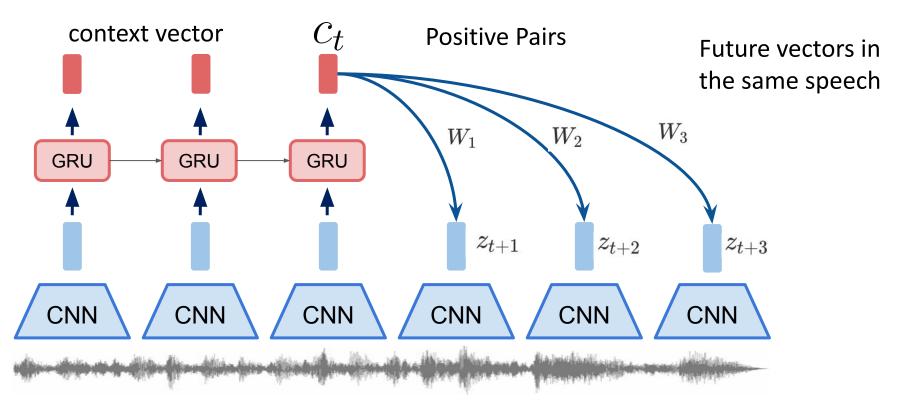
Contrastive Predictive Coding (CPC)



down sampling rate: 160

speech sampling rate: 16,000 Hz

Contrastive Predictive Coding (CPC)

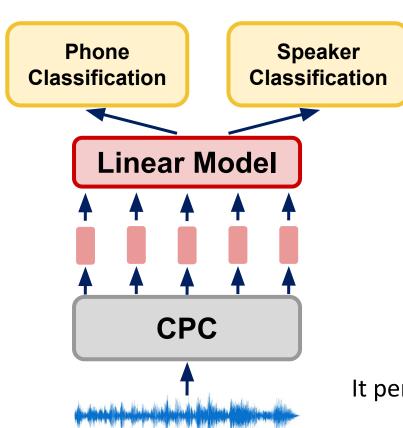


speech sampling rate: 16,000 Hz

Contrastive Predictive Coding (CPC) Negative Pairs C_t context vector **Positive Samples CNN** W_3 W_2 W_1 **GRU GRU GRU** vectors in different z_{t+3} z_{t+1} z_{t+2} speech CNN CNN CNN CNN CNN CNN

speech sampling rate: 16,000 Hz

Contrastive Predictive Coding (CPC)

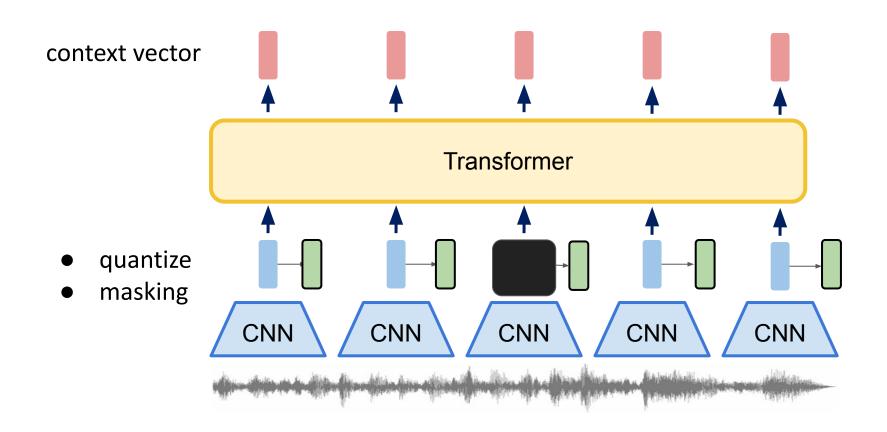


Method	ACC
Phone classification	
Random initialization	27.6
MFCC features	39.7
CPC	64.6
Supervised	74.6
Speaker classification	
Random initialization	1.87
MFCC features	17.6
CPC	97.4
Supervised	98.5

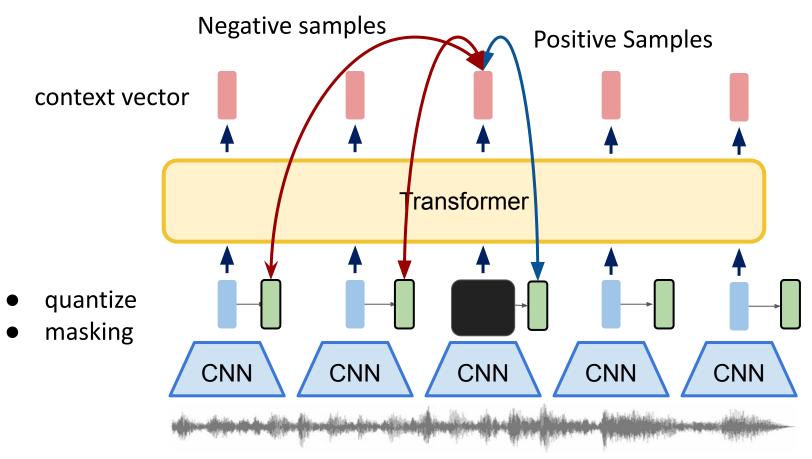
It performs well on both content and speaker tasks!

CPC HuBERT WavLM wav2vec 2.0 **BEST-RQ** XLS-R **Contrastive Models Predictive Models**

Wav2vec 2.0

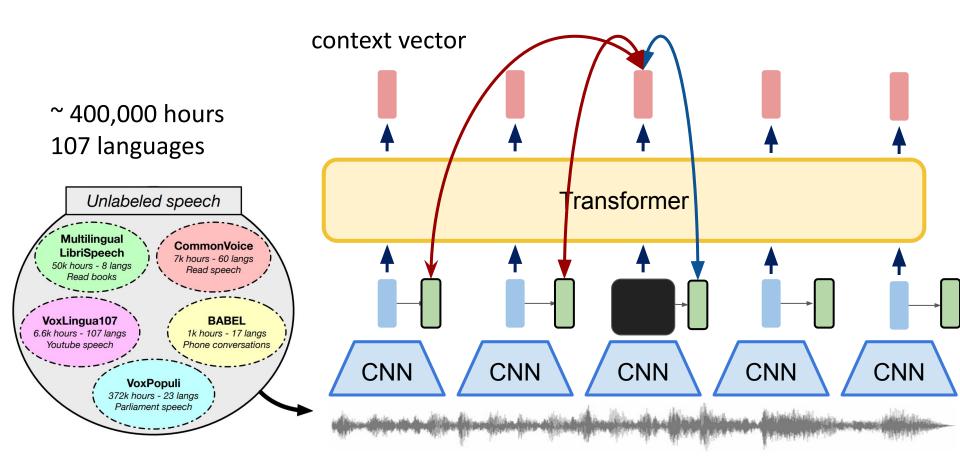


Wav2vec 2.0



CPC **HuBERT** WavLM wav2vec 2.0 **BEST-RQ** XLS-R **Contrastive Models Predictive Models**

XLS-R



LibriSpeech ASR results

 Performance drop when the size is the same as wav2vec 2.0

M - 1-1	de	ev	test		
Model	clean	other	clean	other	
10 min labeled					
wav2vec 2.0 LV-60K (0.3B)	31.7	35.0	32.1	34.5	
XLS-R (0.3B)	33.3	39.8	34.1	39.6	
XLS-R (1B)	28.4	32.5	29.1	32.5	
1h labeled					
wav2vec 2.0 LV-60K (0.3B)	13.7	16.9	13.7	17.1	
XLS-R (0.3B)	17.1	23.7	16.8	24.0	
XLS-R (1B)	13.2	17.0	13.1	17.2	
10h labeled				-	
wav2vec 2.0 LV-60K (0.3B)	5.7	9.2	5.6	9.4	
XLS-R (0.3B)	8.3	15.1	8.3	15.4	
XLS-R (1B)	5.9	10.5	5.9	10.6	

LibriSpeech ASR results

Model	de	ev	test		
Model	clean	other	clean	other	
10 min labeled					
wav2vec 2.0 LV-60K (0.3B)	31.7	35.0	32.1	34.5	
XLS-R (0.3B)	33.3	39.8	34.1	39.6	
XLS-R (1B)	28.4	32.5	29.1	32.5	
1h labeled					
wav2vec 2.0 LV-60K (0.3B)	13.7	16.9	13.7	17.1	
XLS-R (0.3B)	17.1	23.7	16.8	24.0	
XLS-R (1B)	13.2	17.0	13.1	17.2	
10h labeled					
wav2vec 2.0 LV-60K (0.3B)	5.7	9.2	5.6	9.4	
XLS-R (0.3B)	8.3	15.1	8.3	15.4	
XLS-R (1B)	5.9	10.5	5.9	10.6	

 Achieve competitive performance when model size is bigger

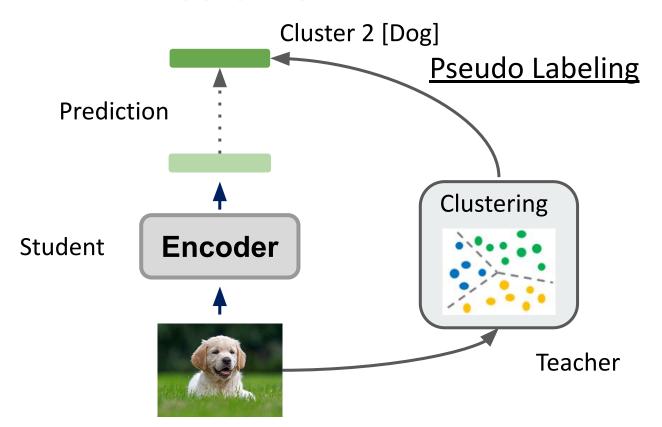
Multilingual LibriSpeech

	#ft	en	de	nl	fr	es	it	pt	pl*	Avg.
Full labeled data (h)		44.7K	2K	1.6K	1.1K	918	247	161	104	
Previous work Pratap et al. (2020) XLSR-53	full 10h	5.9 14.6	6.5 8.4	12.0 12.8	5.6 12.5	6.1 8.9	10.5 13.4	19.5 18.2	19.4 17.8	10.7 13.8
This work XLS-R (0.3B) XLS-R (1B) XLS-R (2B)	10h 10h 10h	15.9 12.9 14.0	9.0 7.4 7.6	13.5 11.6 11.8	12.4 10.2 10.0	8.1 7.1 6.9	13.1 12.0 12.1	17.0 15.8 15.6	13.9 10.5 9.8	12.8 10.9 11.0

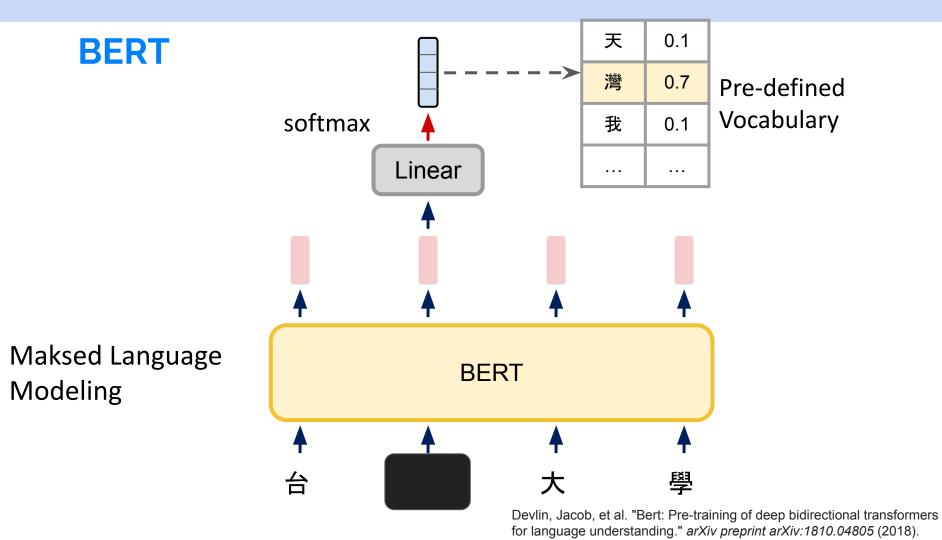
Achieve competitive performance when only using 10 hour labeled data

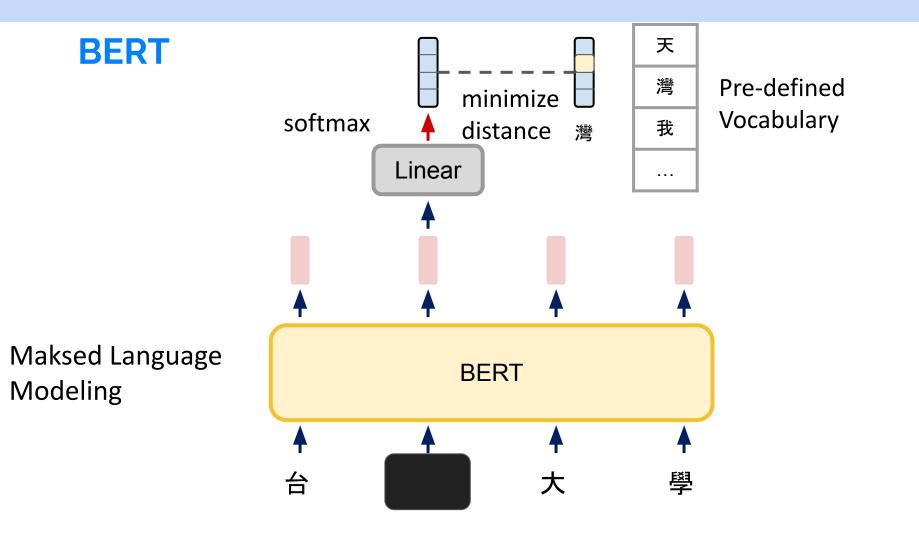
CPC **HuBERT WavLM** wav2vec 2.0 **BEST-RQ** XLS-R **Contrastive Models Predictive Models**

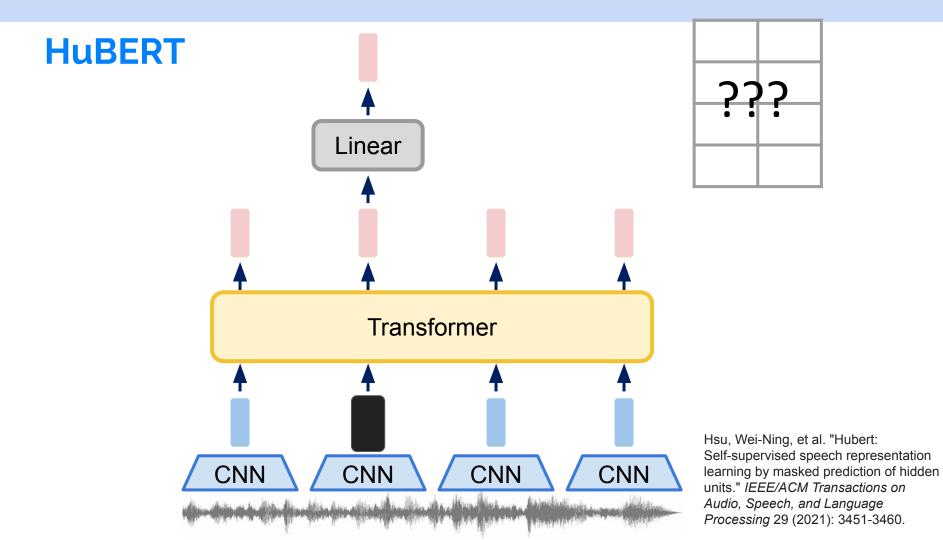
Predictive

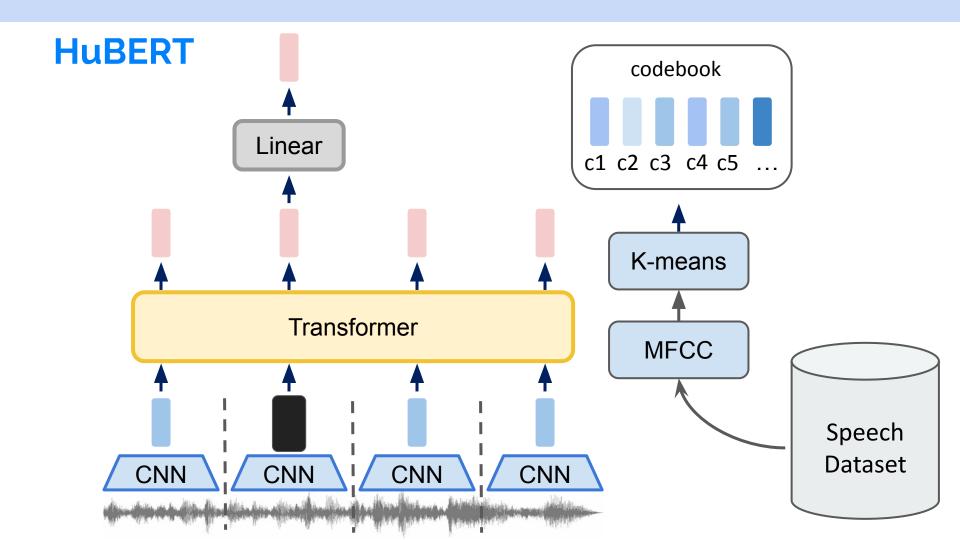


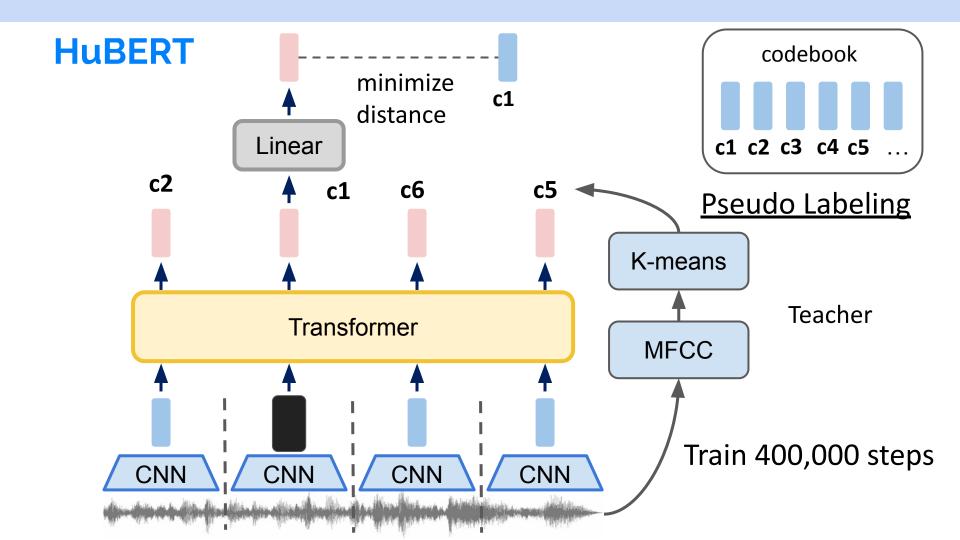
CPC **HuBERT** WavLM wav2vec 2.0 **BEST-RQ** XLS-R **Contrastive Models Predictive Models**

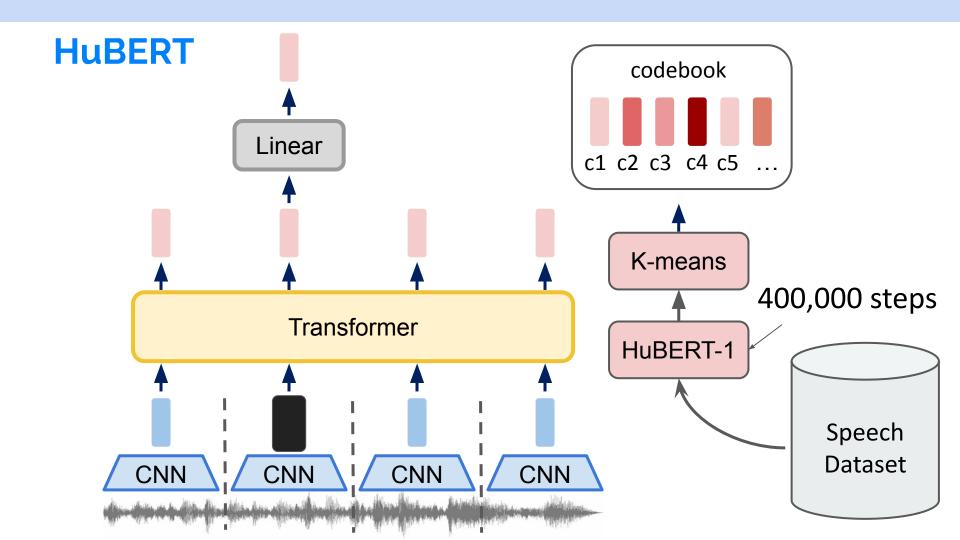


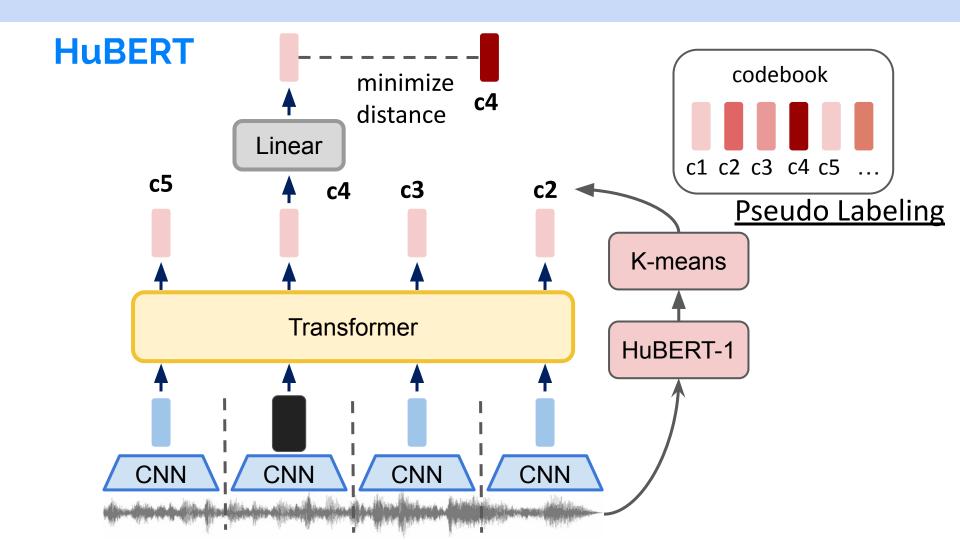






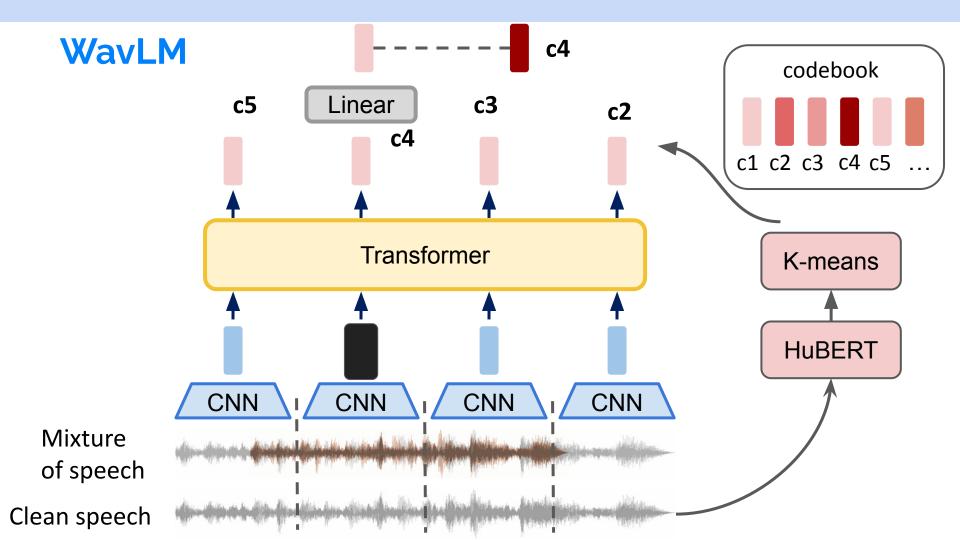






SSL Speech Representation Learning Models

CPC **HuBERT WavLM** wav2vec 2.0 **BEST-RQ** XLS-R **Contrastive Models Predictive Models**



Speaker Verification

Facture	EER (%)						
Feature	Vox1-O	Vox1-E	Vox1-H				
ECAPA-TDNN [19]	1.010	1.240	2.320				
ECAPA-TDNN (Ours)	1.080	1.200	2.127				
HuBERT Base	0.989	1.068	2.216				
HuBERT Large	0.808	0.822	1.678				
WavLM Base+	0.84	0.928	1.758				
WavLM Large	0.617	0.662	1.318				
HuBERT Large*	0.585	0.654	1.342				
WavLM Large*	0.383	0.480	0.986				

EER: equal error rate, the lower the better

With speech denoising, WavLM performs better than HuBERT

SSL Speech Representation Learning Models

CPC HuBERT WavLM wav2vec 2.0 **BEST-RQ** XLS-R **Contrastive Models Predictive Models**

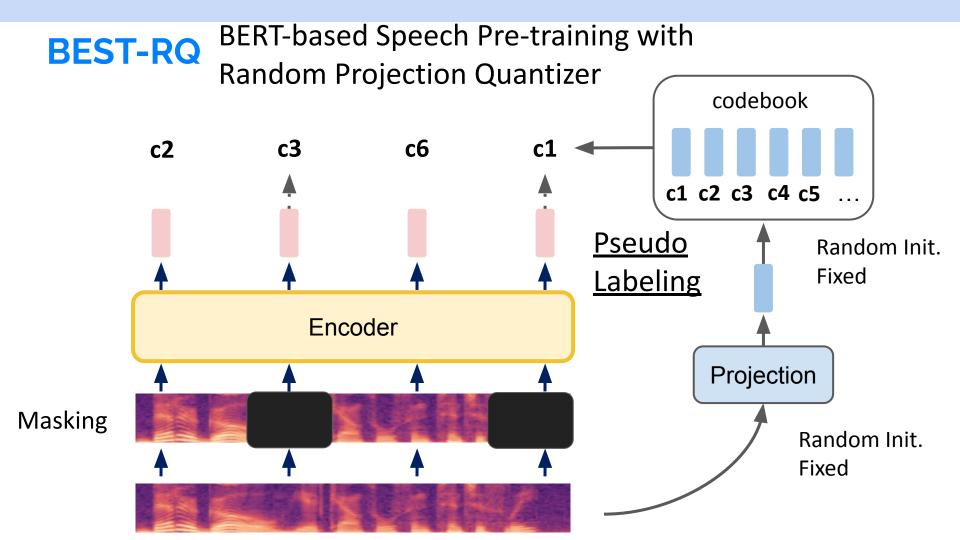


Table 1. LibriSpeech results with non-streaming models. The LM used in our experiment is a Transfomer LM with model size 0.1B.

Method

Size (B)

No LM

With LM

Method	Size (B) NO LIVI						WILL LIVE				
		dev	dev-other	test	test-other	dev	dev-other	test	test-other		
wav2vec 2.0 (Baevski et al., 2020b)	0.3	2.1	4.5	2.2	4.5	1.6	3.0	1.8	3.3		
HuBERT Large (Hsu et al., 2021)	0.3	_	_	-	_	1.5	3.0	1.9	3.3		
HuBERT X-Large (Hsu et al., 2021)	1.0	_	_	_	_	1.5	2.5	1.8	2.9		
w2v-Conformer XL (Zhang et al., 2020)	0.6	1.7	3.5	1.7	3.5	1.6	3.2	1.5	3.2		
w2v-BERT XL (Chung et al., 2021)	0.6	1.5	2.9	1.5	2.9	1.4	2.8	1.5	2.8		
BEST-RQ (Ours)	0.6	1.5	2.8	1.6	2.9	1.4	2.6	1.5	2.7		

- Comparable to other Speech SSL models
- Teacher (clusters) is not necessary to be good

Overview

Speech Foundation Models

Part 1

Speech Representation Learning

- SSL Models
- Representation benchmarking

Part 2

Speech
Large Language Models

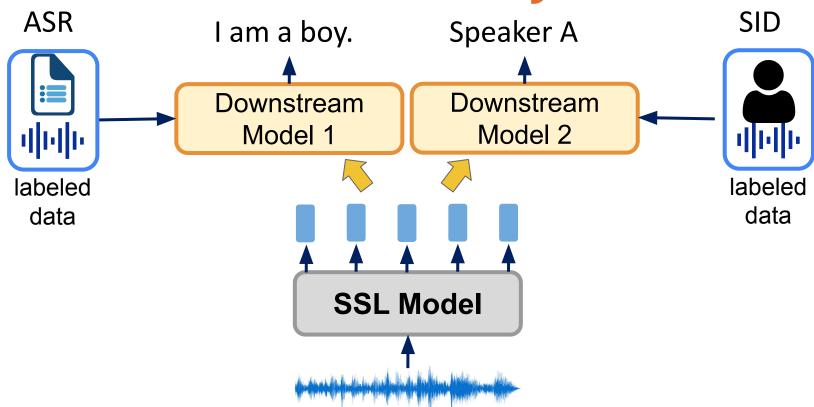
- 1. Textless NLP
- 2. AudioLM
- 3. Regeneration Framework

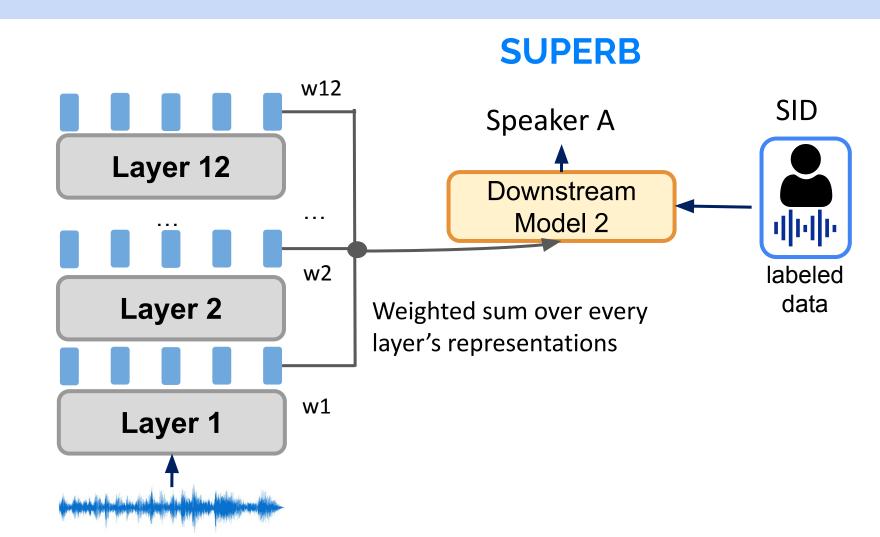
Part 3

Other Speech
Foundation Models

- 1. Whisper
- 2. USM

SUPERB





Query By Example

Speaker Diarization

Speech Recognition

Speaker Identification

Phoneme Recognition

Intent Classification

Speaker Verification

Keyword **Spotting**

Slot Filling

Emotion Recognition

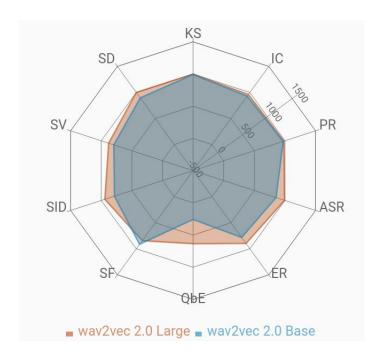
Speaker

Content

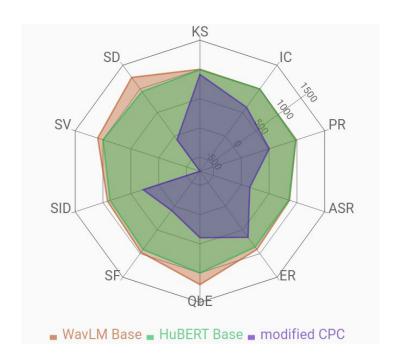
Semantics

Paralinguistics

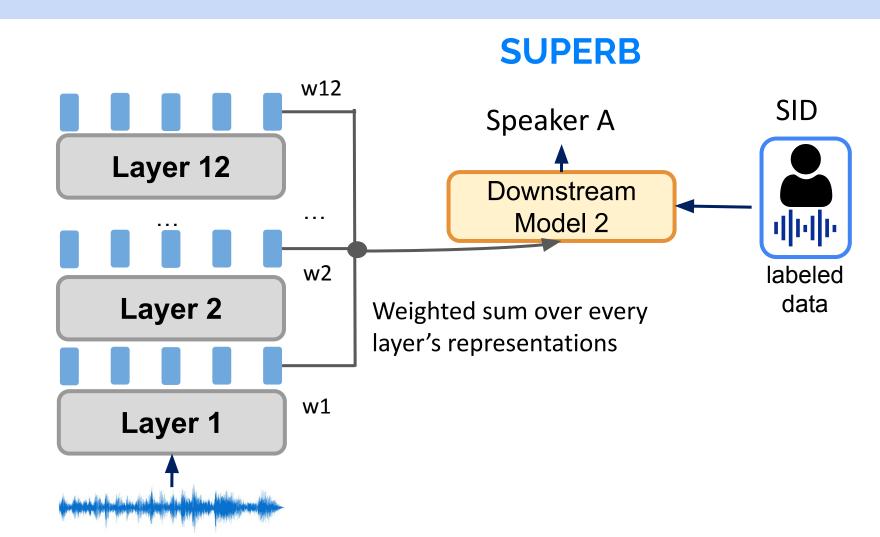
Method	Name	Description	URL	Params ↓	MACs ↓	(1) ↓	(2) ↓	(3) ↓	(4) ↓	Rank ↑	Score ↑	KS↑	IC ↑	PR ↓	ASR ↓	ER ↑
WavLM Large	Microsoft	M-P + VQ +	9	3.166e+8	4.326e+12	3.8	6.7	1.0	2.1	25.8	1145	97.86	99.31	3.06	3.44	70.62
WavLM Base+	Microsoft	M-P + VQ +	69	9.470e+7	1.670e+12	1.4	2.6	4.2	8.3	24.05	1106	97.37	99	3.92	5.59	68.65
WavLM Base	Microsoft	M-P + VQ +	9	9.470e+7	1.670e+12	1.4	2.6	4.2	8.3	20.95	1019	96.79	98.63	4.84	6.21	65.94
data2vec Large	CI Tang	Masked Ge	9	3.143e+8	4.306e+12	3.8	6.7	1.0	2.1	20.8	949	96.75	98.31	3.6	3.36	66.31
.ightHuBERT Stag	LightHuBE	Once-for-Al	(3)	9.500e+7	-	-	-		-	20.1	959	96.82	98.5	4.15	5.71	66.25
HuBERT Large	paper	M-P + VQ	9	3.166e+8	4.324e+12	3.8	6.7	1.0	2.1	19.15	919	95.29	98.76	3.53	3.62	67.62
data2vec-aqc Base	Speech La	Masked Ge	69	9.384e+7	1.657e+12	1.4	2.5	4.1	8.3	19.05	935	96.36	98.92	4.11	5.39	67.59
CoBERT Base	ByteDance	Code Repr	69	9.435e+7	1.660e+12	1.4	2.5	4.1	8.3	18	894	96.36	98.87	3.08	4.74	65.32
HuBERT Base	paper	M-P + VQ	(3)	9.470e+7	1.669e+12	1.4	2.6	4.2	8.3	17.75	941	96.3	98.34	5.41	6.42	64.92
wav2vec 2.0 Large	paper	M-C + VQ	9	3.174e+8	4.326e+12	3.8	6.7	1.0	2.1	17.7	914	96.66	95.28	4.75	3.75	65.64
ccc-wav2vec 2.0 B	Speech La	M-C + VQ	9	9.504e+7	1.670e+12	1.4	2.6	4.2	8.3	17.45	940	96.72	96.47	5.95	6.3	64.17
data2vec base	Cl Tang	Masked Ge	69	9.375e+7	1.657e+12	1.4	2.5	4.1	8.3	16.85	884	96.56	97.63	4.69	4.94	66.27
LightHuBERT Small	LightHuBE	Once-for-Al	69	2.700e+7	8.607e+11	7.7	1.3	2.1	4.3	15.45	901	96.07	98.23	6.6	8.34	64.12
FaST-VGS+	Puyuan Pe	FaST-VGS I	-	2.172e+8	7.	-	0	-	2	14.7	809	97.27	98.97	7.76	8.83	62.71
wav2vec 2.0 Base	paper	M-C + VQ	9	9.504e+7	1.669e+12	1.4	2.6	4.2	8.3	13.2	818	96.23	92.35	5.74	6.43	63.43
DistilHuBERT	Heng-Jui C	multi-task l	2	2.349e+7	7.859e+11	7.2	1.2	2.0	3.8	11.8	717	95.98	94.99	16.27	13.37	63.02
DeCoAR 2.0	paper	M-G + VQ	(3)	8.984e+7	1.114e+12	9.7	1.7	2.7	5.6	11.1	722	94.48	90.8	14.93	13.02	62.47
wav2vec	paper	F-C	(5)	3.254e+7	1.086e+12	1.0	1.7	2.7	5.2	8.9	529	95.59	84.92	31.58	15.86	59.79



The bigger, the better



Strong model performs better on all kinds of tasks



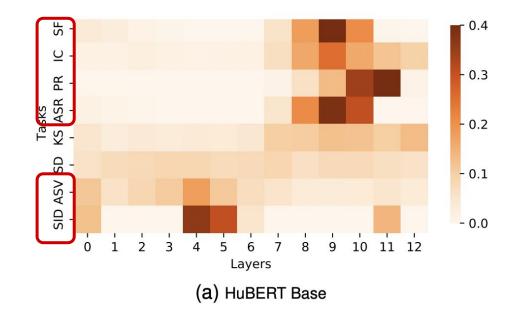
Representation Weight Analysis

Speaker tasks:

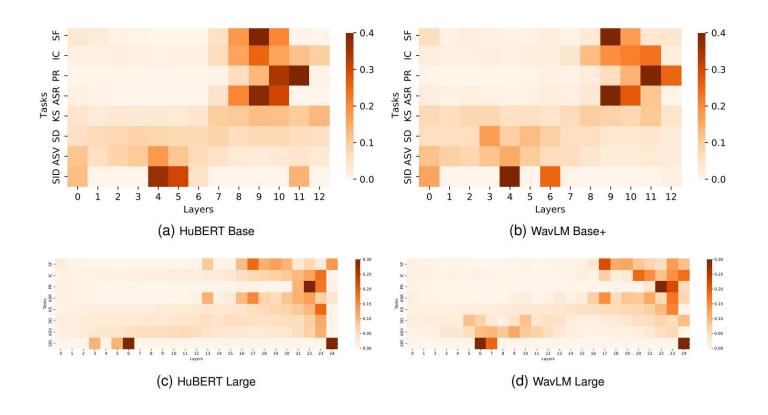
- ASV (Speaker Verification)
- SID (Speaker Identification)
- 0 ...

Content tasks:

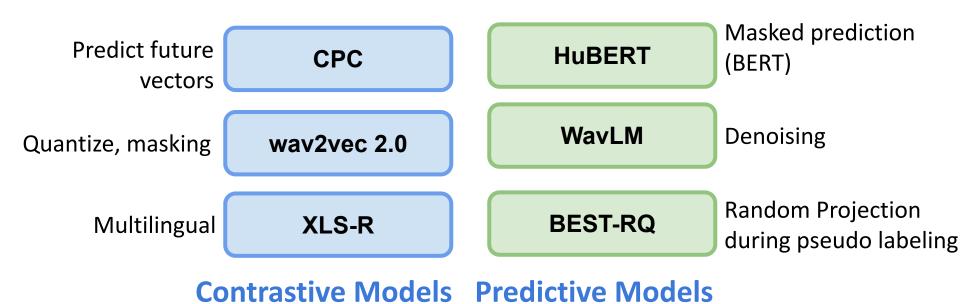
- ASR (Speech Recognition)
- IC (Intent Classification)



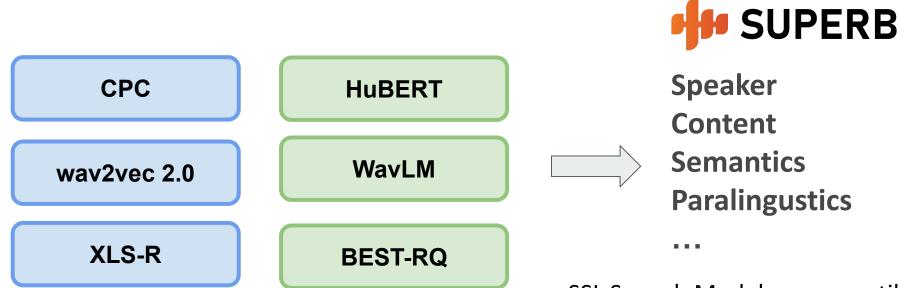
Representation Weight Analysis



Part 1 Summary: Speech Representation Learning



Part 1 Summary: Speech Representation Learning



- SSL Speech Models are versatile!
 Contrastive Models Predictive Models
 Different information is encoded
 - Different information is encoded in different layer's representation

Overview

Speech Foundation Models

Part 1

Speech Representation Learning

- 1. SSL Models
- 2. Representation benchmarking

Part 2

Speech
Large Language Models

- Textless NLP
- 2. AudioLM
- 3. VALL-E

Part 3

Other Speech
Foundation Models

- 1. Whisper
- 2. USM

Overview

Speech Foundation Models

Part 1

Speech Representation Learning

- 1. SSL Models
- 2. Representation benchmarking

Part 2

Speech
Large Language Models

- 1. Textless NLP
- 2. AudioLM
- 3. VALL-E

Part 3

Other Speech
Foundation Models

- 1. Whisper
- 2. USM

Research

Blog

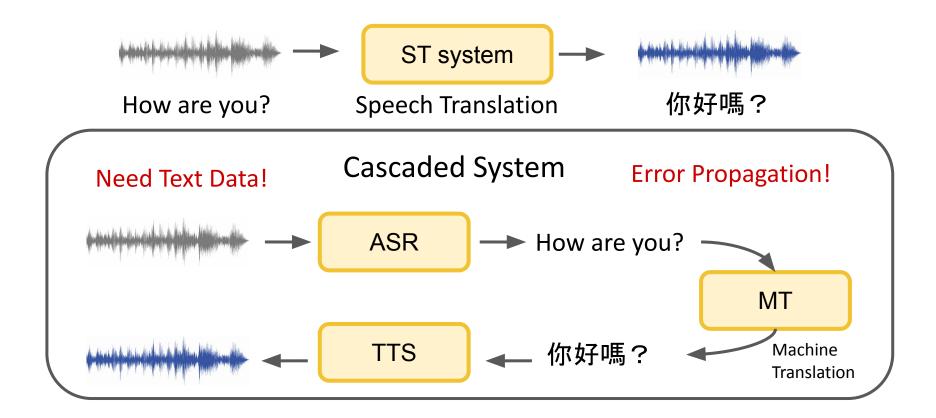
Resources About

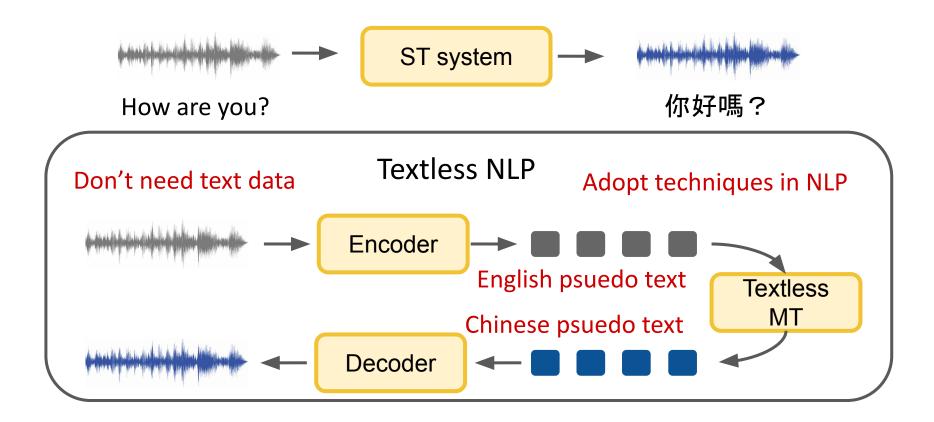
RESEARCH I NLP

Textless NLP: Generating expressive speech from raw audio

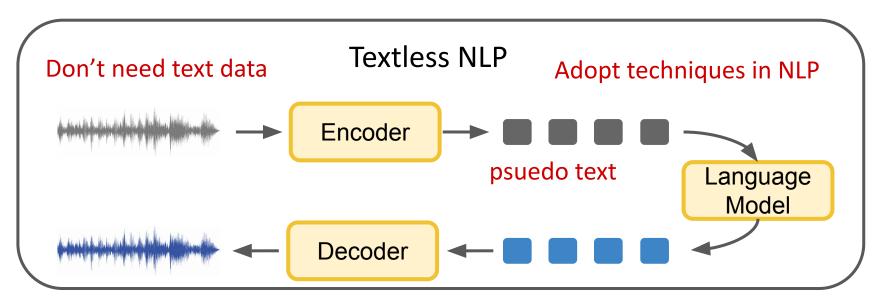
- → Share on Facebook
- → Share on Twitter

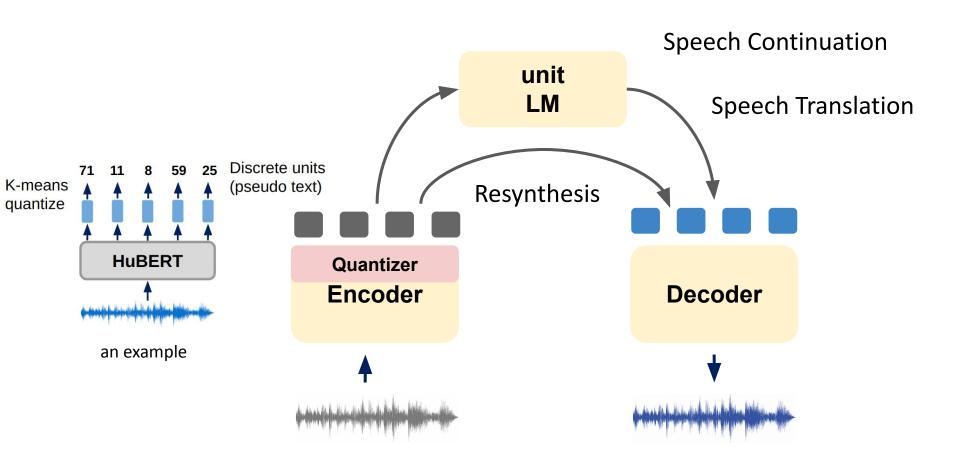
Our Work

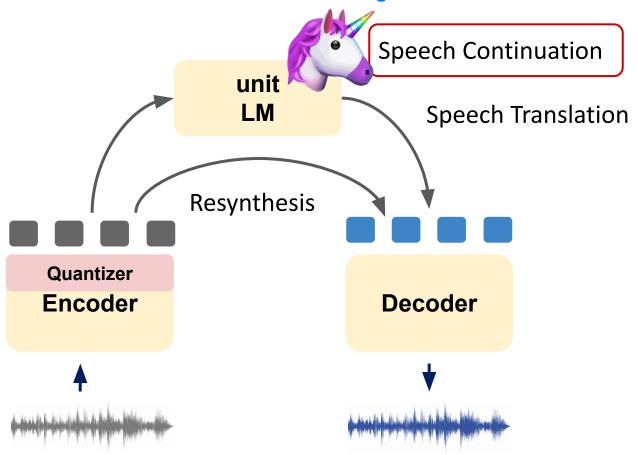


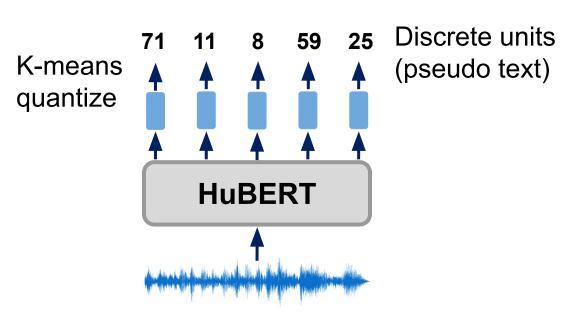


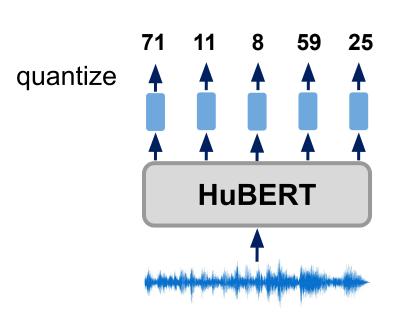
- GPT: Speech Continuation
- BART: Speech Translation
- no LM: Speech Resynthesis

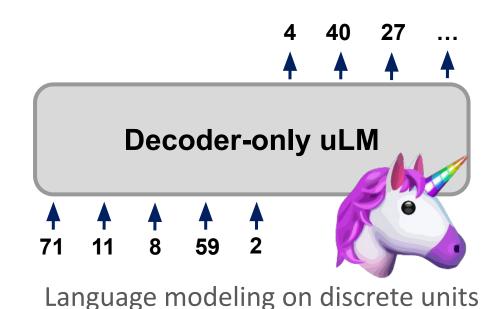


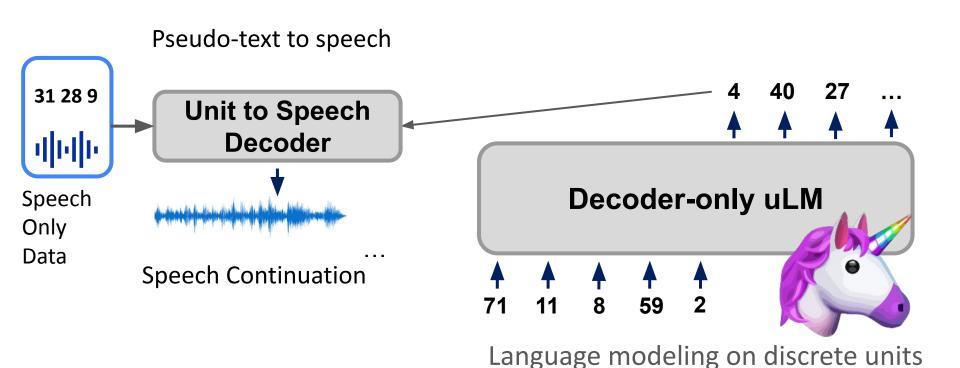




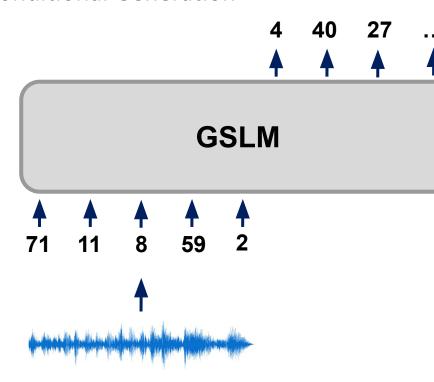




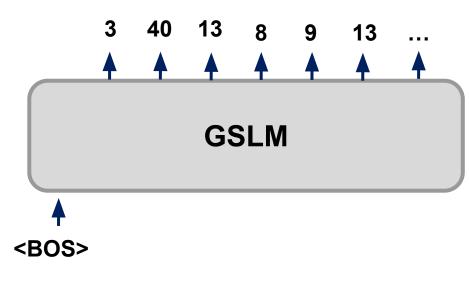


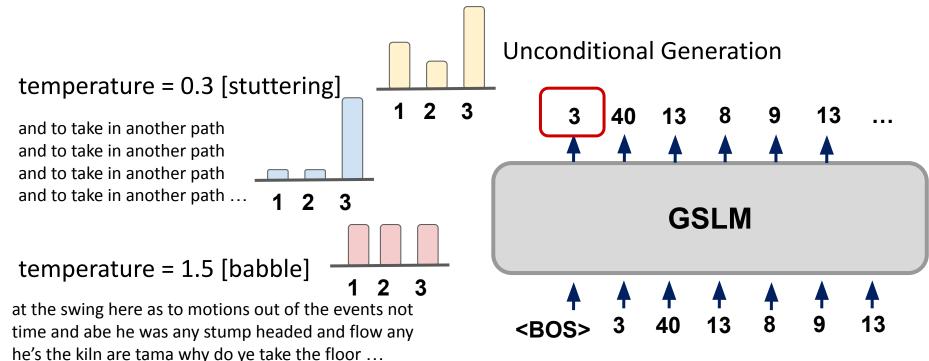


Conditional Generation



Unconditional Generation





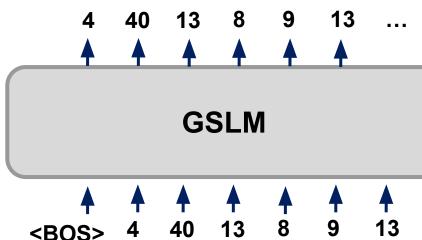


Unconditional Generation

temperature = 1

but it is attendant from the people to defend himself from this information pride of the potential in criminal activity a curiosity and impetuosity of the world a war soon acquired

"Locally" coherent

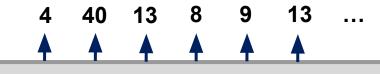




Unconditional Generation

temperature = 1

but it is attendant from the people to defend himself from this information pride of the potential in criminal activity a curiosity and impetuosity of the world a war soon acquired



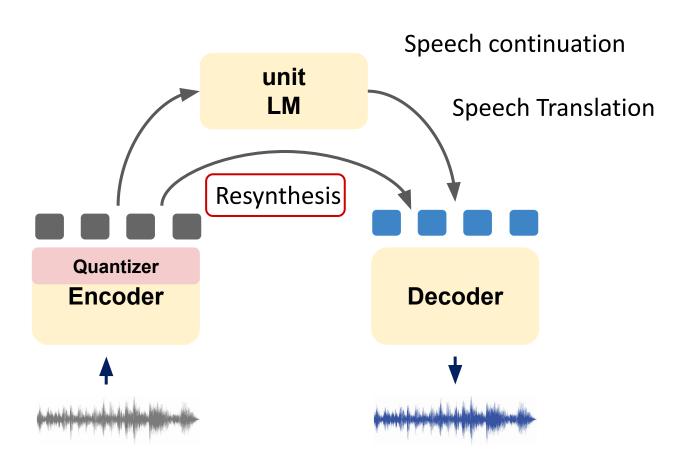
GSLM

*

請翻譯 but it is attendant from the people to defend himself from this information pride of the potential in criminal activity a curiosity and impetuosity of the world a war soon acquired

這句話的意思可能有些混亂,但我會盡力翻譯出最合理的意思:

"但是,人們必須保護自己,免受罪犯活動、世界好奇心和冒失的影響,這些情況可能很快引 發點妥。"



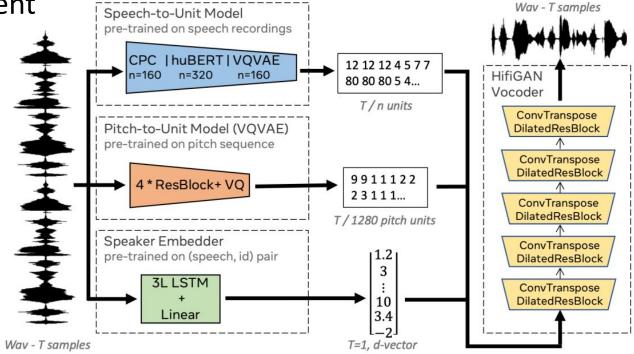
Speech Resynthesis

Feature disentanglement

Content

Pitch

Speaker



Polyak, Adam, et al. "Speech resynthesis from discrete disentangled self-supervised representations." *arXiv preprint arXiv:2104.00355* (2021).

Speech Resynthesis

Speaker information is removed in the discrete units

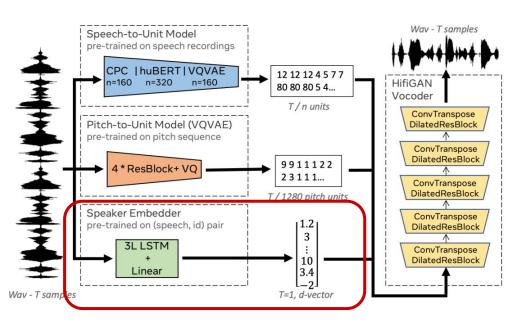
Multistream is required to perform resynthesis

Model	Quantized?	Vocab. size	Accuracy		
HuBERT	-	-	0.99		
HuBERT	✓	50	0.11		
HuBERT	✓	100	0.19		
HuBERT	\checkmark	200	0.29		
HuBERT	\checkmark	500	0.48		
CPC	-	÷ ·	0.99		
CPC	\checkmark	50	0.19		
CPC	\checkmark	100	0.32		
CPC	✓	200	0.34		
CPC	\checkmark	500	0.40		

Speaker Identification

Kharitonov, Eugene, et al. "textless-lib: A library for textless spoken language processing." arXiv preprint arXiv:2202.07359 (2022).

Speech Resynthesis

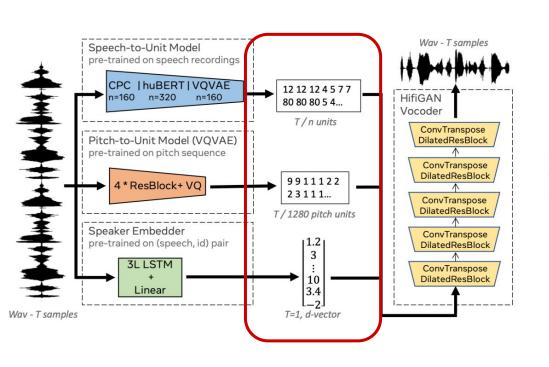


Voice Conversion

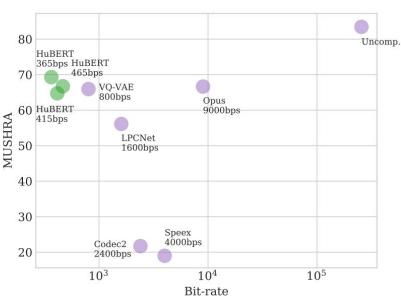
Dataset	Method	Voice Conversion					
		PER ↓	WER ↓	EER ↓	MOS↑		
VCTK	GT	17.16	4.32	3.25	4.11±0.29		
LJ	CPC HuBERT VQ-VAE	22.22 19.09 40.88	16.11 12.23 36.96	0.46 0.31 9.65	3.57±0.15 3.71±0.24 2.90±0.17		
VCTK	CPC HuBERT VQ-VAE	23.58 20.85 36.88	15.98 12.72 29.44	4.83 6.01 11.56	3.42 ± 0.24 3.58 ± 0.28 3.08 ± 0.34		

Replace the speaker embedding with other speaker's embedding

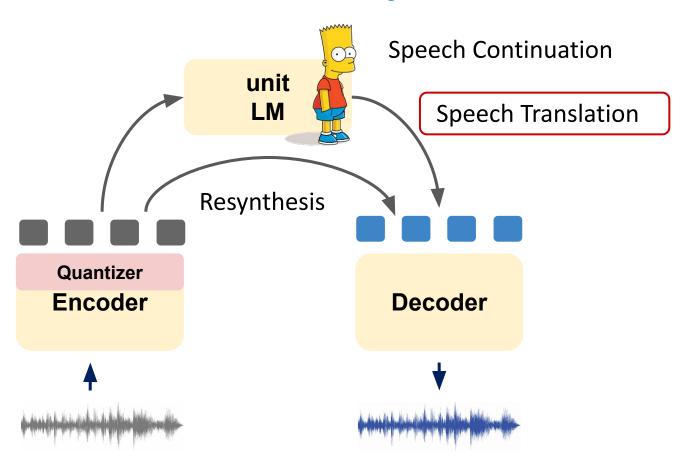
Speech Resynthesis



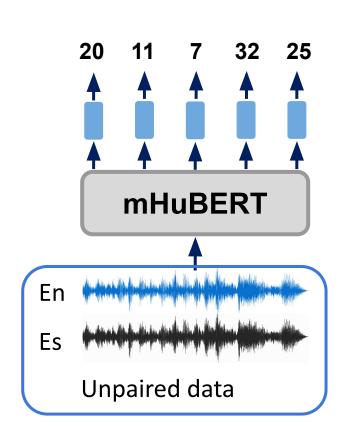
Speech Codec

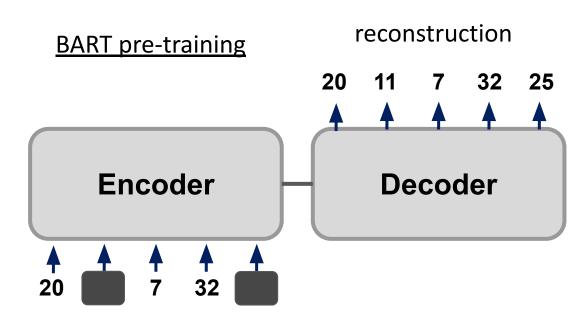


Textless NLP Project



Speech Translation: Unit BART

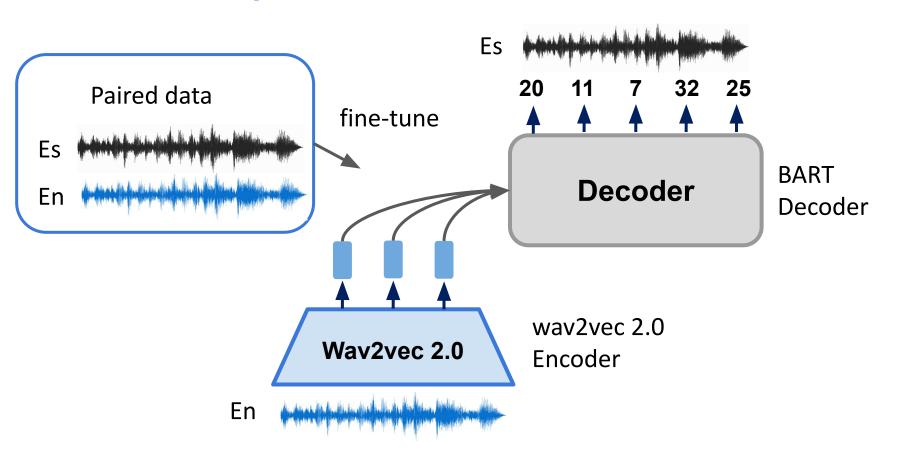




corrupted unit sequence

Popuri, Sravya, et al. "Enhanced direct speech-to-speech translation using self-supervised pre-training and data augmentation." *arXiv preprint arXiv:2204.02967* (2022).

Speech Translation: Unit BART



Speech Translation: Unit BART

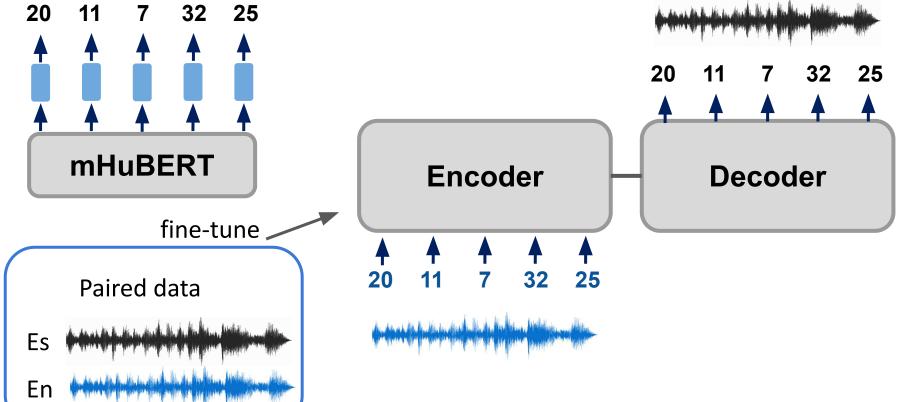


Table 2: Dev / test BLEU on all the datasets included in the "S2ST-syn" data. All S2UT systems are decoded with beam size 10. MOS is reported with 95% confidence interval. (w2v2-L: wav2vec 2.0 LARGE)

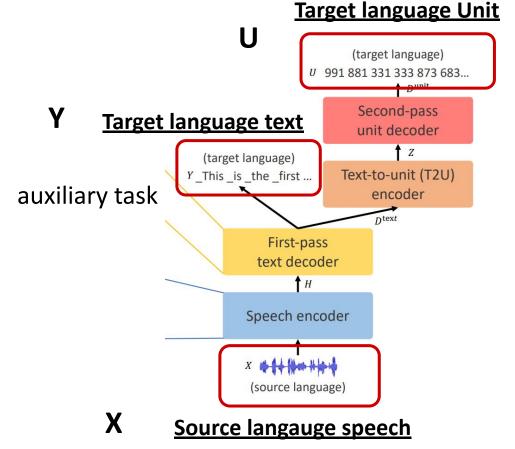
×		En-Es			Es-En				
= (=)		BLEU		MOS	BLEU			MOS	
ID		Europarl-ST	MuST-C	combined	CoVoST-2	Europarl-ST	mTEDx	combined	
Cascaded systems:									
1	S2T (w2v2-L)+TTS	33.0 / 32.6	30.3 / 30.1	3.80 ± 0.12	25.9 / 28.4	26.9 / 23.6	25.3 / 21.5	3.53 ± 0.14	
2	ASR+MT+TTS	28.9 / 28.8	36.4 / 34.2	-	37.3 / 33.8	33.3 / 29.1	29.3 / 32.4		
S2U'	T systems without pre-training:	1						 	
3	S2UT (w/o multitask) [4]	23.8 / 24.0	25.0 / 23.3	-	0.0 / 0.0	0.0 / 0.0	0.1 / 0.0	-	
4	S2UT (w/ multitasks) [4]	25.5 / 25.8	26.3 / 24.3	3.97 ± 0.09	20.6 / 22.7	20.4 / 18.0	20.2 / 16.9	3.26 ± 0.09	
S2UT systems with model pre-training:									
5	w2v2-L	30.8 / 31.0	31.1 / 30.3	3.35 ± 0.15	24.4 / 27.0	24.2 / 21.5	24.3 / 21.0	3.15 ± 0.14	
6	w2v2-L + mBART (LNA-E)	30.1 / 30.4	31.0 / 28.2	-	24.4 / 27.1	24.0 / 21.4	23.6 / 21.1		
7	w2v2-L + mBART (LNA-D)	32.2 / 32.5	32.6 / 30.8	4.06 ± 0.10	27.3 / 30.2	29.0 / 26.4	29.6 / 25.2	2.81 ± 0.16	
8	w2v2-L + mBART (LNA-E,D)	30.6 / 31.0	31.3 / 29.3	-	26.8 / 29.6	27.6 / 25.2	24.7 / 22.3	-	
9	w2v2-L + mBART (full)	31.4 / 30.8	31.2 / 30.5	-	27.3 / 30.1	27.0 / 24.4	26.6 / 24.2	:: -	

Speech to speech translation is competitive to cascaded systems (Without any text supervision)

Speech Translation: UnitY

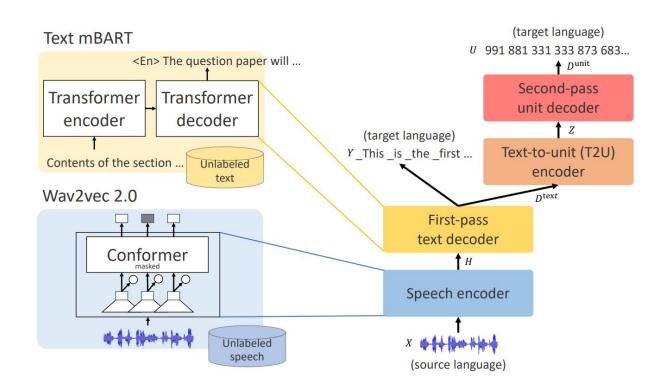
- 1. Speech Encoder
- 2. First-pass text decoder
- 3. Text-to-unit encoder
- 4. Second-pass unit decoder

- X: Source language speech input
- Y: Target language text
- U: Target language discrete units



Speech Translation: UnitY

- Unlabeled text
- Unlabeled speech
- labeled speech
- paired speech



ID	Model	Encoder	ASR-BLEU (↑)			
ID.	Wiodei	Liteoder	dev	dev2	test	
A0	Synthetic target (Lee	ynthetic target (Lee et al., 2022a)			90.5	
Casc	aded systems					
A1	$ASR \to MT \to TTS$	LSTM (Lee et al., 2022a)	42.1	43.5	43.9	
A2		LSTM (Jia et al., 2019b)	39.4	41.2	41.4	
A3		LSTM (Jia et al., 2022b)	_	_	43.3	
A4	$S2TT \rightarrow TTS$	LSTM (Lee et al., 2022a)	38.5	39.9	40.2	
A5	$3211 \rightarrow 113$	Transformer (Dong et al., 2022)	44.3	45.4	45.1	
A6		Conformer	47.8	48.9	48.3	
A7		Conformer wav2vec2.0	51.0	52.2	52.1	
Direc	ct systems (speech-to-u	unit)				
A17		Transformer (Lee et al., 2022a)	-	-	39.9	
A18	S2UT	Conformer	46.2	47.6	47.4	
A19		Conformer wav2vec2.0	53.4	53.9	53.7	
A20	UnitY	Conformer	50.5	51.6	51.4	
A21	Uniti	Conformer wav2vec2.0	55.1	56.5	55.9	

Speech-to-Speech Translation For A Real-world Unwritten Language **English** arandamatan d Single-pass decoder Unit mBART decoder No speaker Wav2vec 2.0 Discrete unit information 3 2 87 44 90 encoder Two-pass decoder

Text

Encoder

En->Hok (Mandarin text): _ 我的 回答 是 ... Hok->En (En text): _ My _answer _ is ...

(first-pass text)

Unit

Decoder

Text mBART

decoder

(source language)

91 56 33 ... (target language)

Overview

Speech Foundation Models

Part 1

Speech Representation Learning

- 1. SSL Models
- 2. Representation benchmarking

Part 2

Speech
Large Language Models

- Textless NLP
- 2. AudioLM
- 3. VALL-E

Part 3

Other Speech
Foundation Models

- 1. Whisper
- 2. USM

Google Research

Philosophy

Research Areas

Publications

People

Resources

BLOG

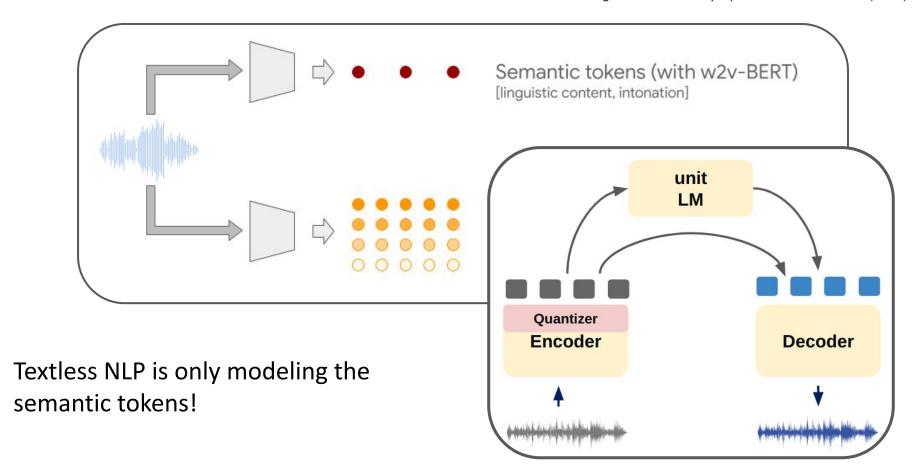
AudioLM: a Language Modeling Approach to Audio Generation

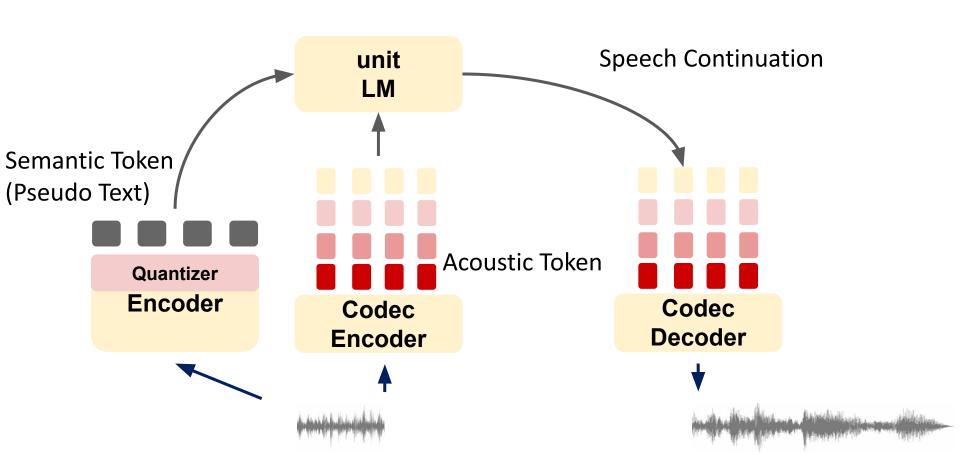
THURSDAY, OCTOBER 06, 2022

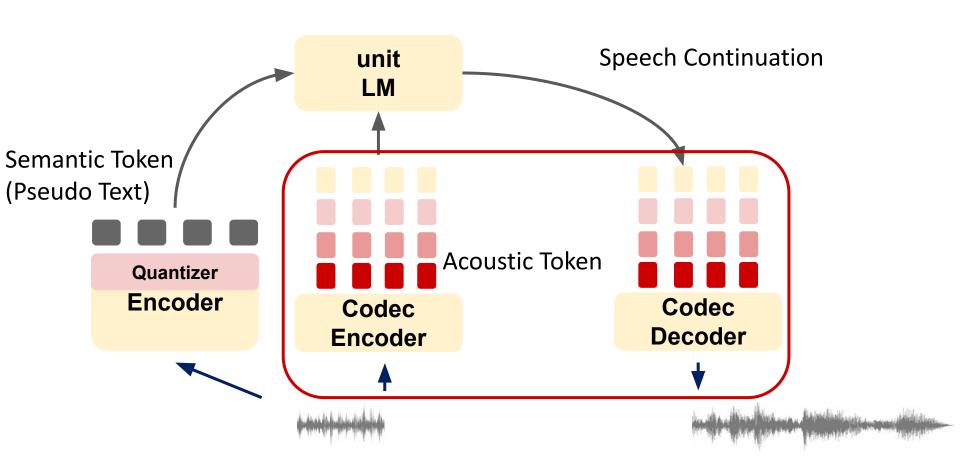
Posted by Zalán Borsos, Research Software Engineer, and Neil Zeghidour, Research Scientist, Google Research

https://ai.googleblog.com/2022/10/audiolm-language-modeling-approach-to.html

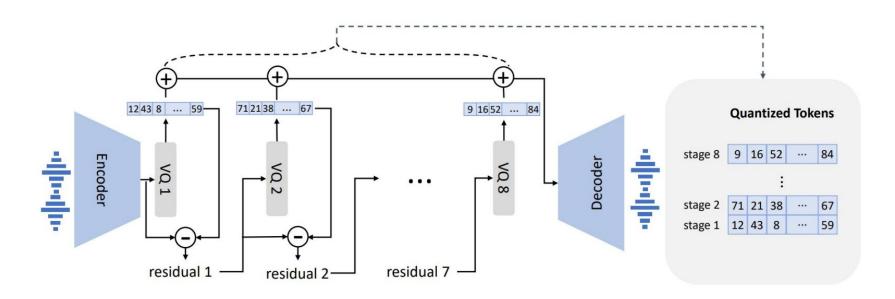
Borsos, Zalán, et al. "Audiolm: a language modeling approach to audio generation." *arXiv preprint arXiv:2209.03143* (2022).



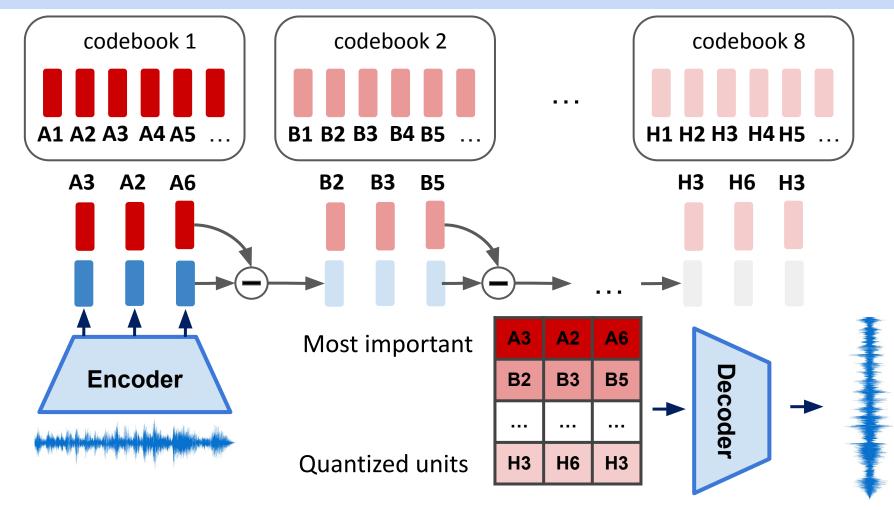




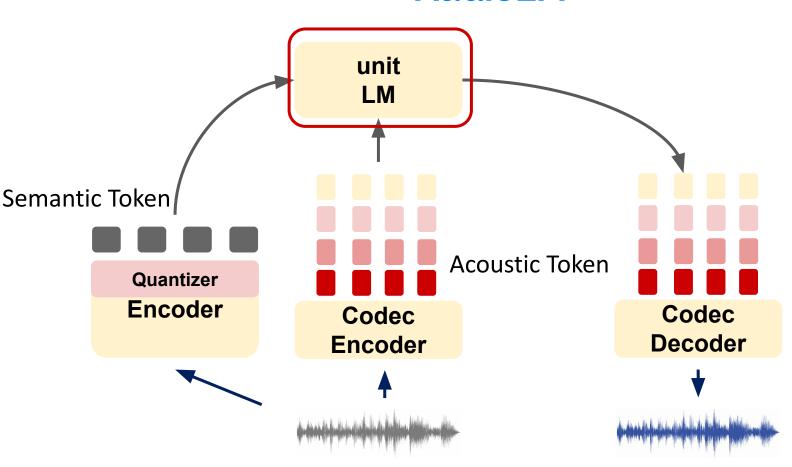
Codec Model

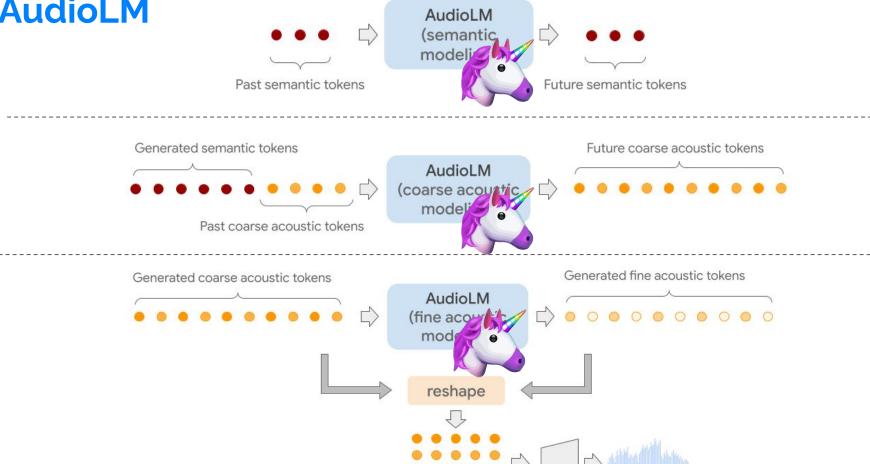


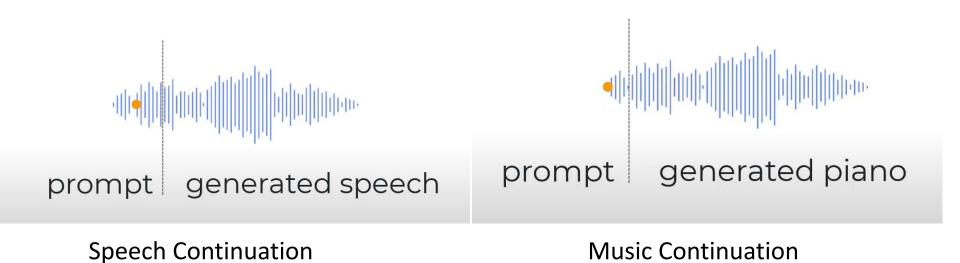
Residual Vector Quantization



Défossez, Alexandre, et al. "High fidelity neural audio compression." arXiv preprint arXiv:2210.13438 (2022).







https://ai.googleblog.com/2022/10/audiolm-language-modeling-approach-to.html

Overview

Speech Foundation Models

Part 1

Speech Representation Learning

- 1. SSL Models
- Representation benchmarking

Part 2

Speech
Large Language Models

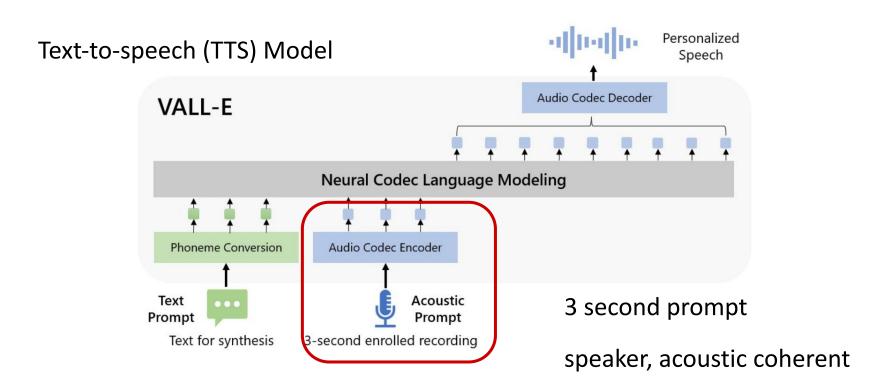
- 1. Textless NLP
- 2. AudioLM
- 3. VALL-E

Part 3

Other Speech
Foundation Models

- 1. Whisper
- 2. USM

VALL-E



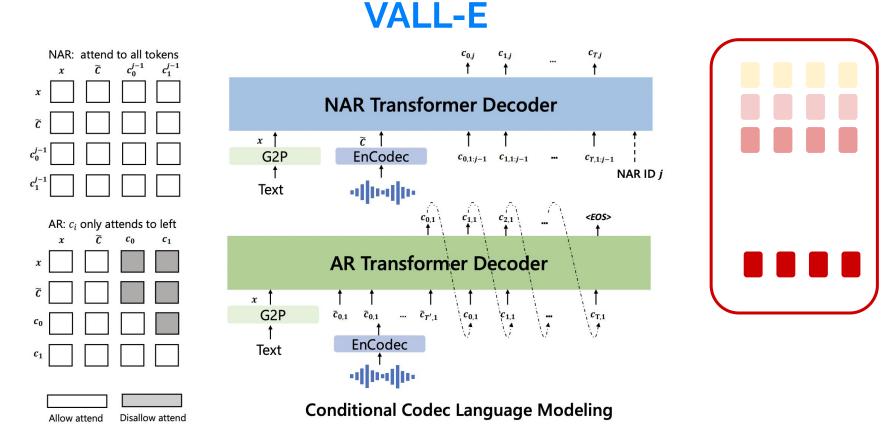
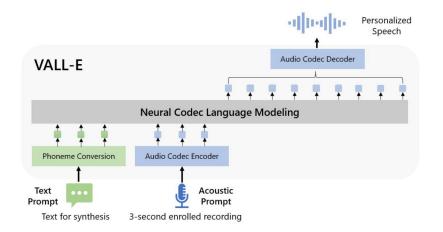


Figure 3: The structure of the conditional codec language modeling, which is built in a hierarchical manner. In practice, the NAR decoder will be called seven times to generate codes in seven quantizers.

VALL-E

- Beat state-of-the-art TTS system
- Speaker similarity is high
- maintain emotion
- maintain acoustic environment



model	WER	SPK				
GroundTruth	2.2	0.754				
Speech-to-Speech Systems						
GSLM	12.4	0.126				
AudioLM*	6.0	_				
TTS Systems						
YourTTS	7.7	0.337				
VALL-E	5.9	0.580				
VALL-E-continual	3.8	0.508				

https://valle-demo.github.io/

Overview

Speech Foundation Models

Part 1

Speech Representation Learning

- 1. SSL Models
- Representation benchmarking
- 3. Efficiently using these models

Part 2

Speech
Large Language Models

- 1. Textless NLP
- 2. AudioLM

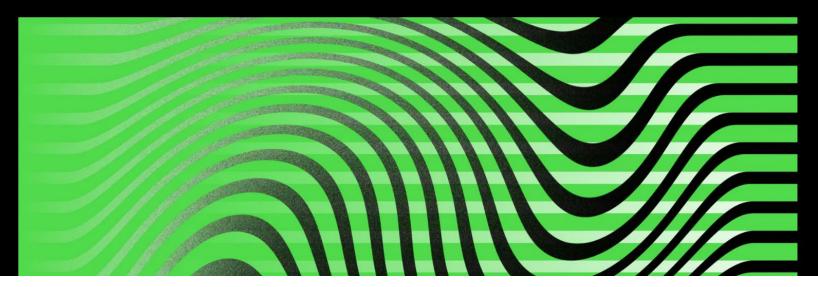
Part 3

Other Speech Foundation Models

- 1. Whisper
- 2. USM

⑤ OpenAl

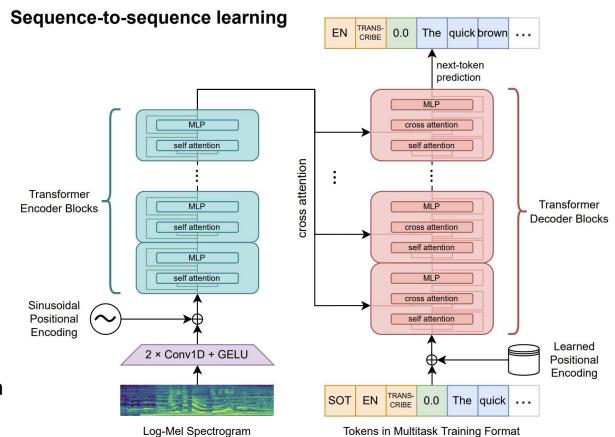
Introducing Whisper



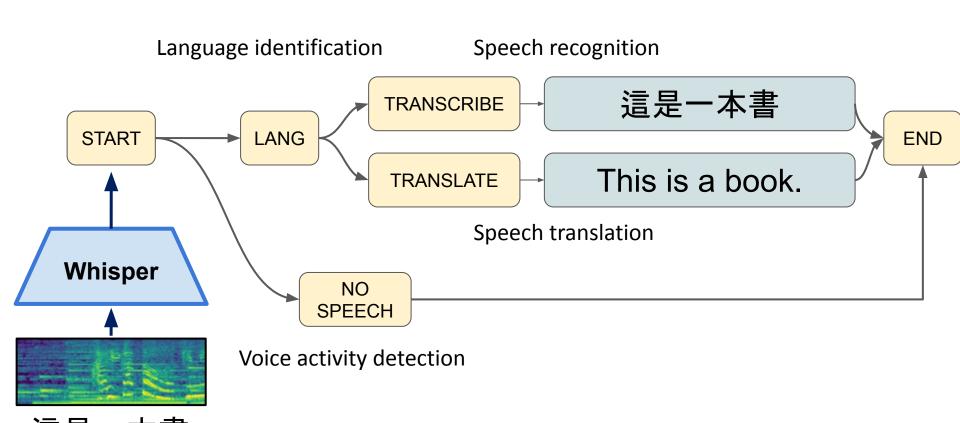
Multitask training data (680k hours) **English transcription** "Ask not what your country can do for ..." Ask not what your country can do for ... Any-to-English speech translation "El rápido zorro marrón salta sobre ..." The quick brown fox jumps over ... Non-English transcription "언덕 위에 올라 내려다보면 너무나 넓고 넓은 …" 언덕 위에 올라 내려다보면 너무나 넓고 넓은 ... No speech (background music playing) Ø

- 680,000 hours labeled data
- Multitask learning

Whisper



Whisper Multitasking



Multilingual Speech Recognition

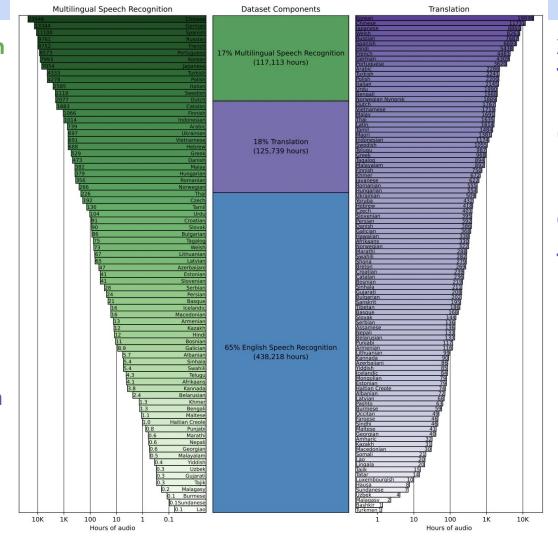
(~120,000 hours)

Chinese German Spanish

• •

English Speech Recognition

(~440,000 hours)

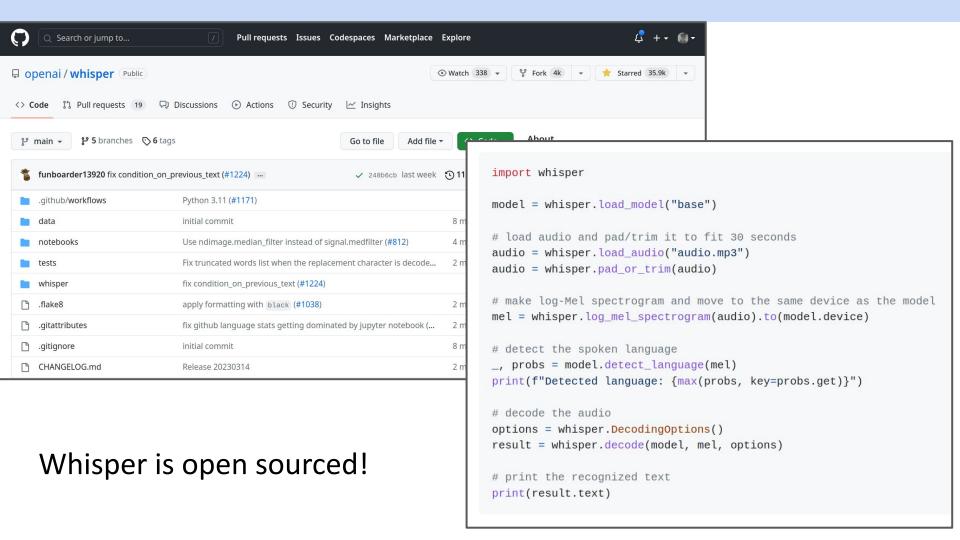


X to English Translation

(~120, 000 hours)

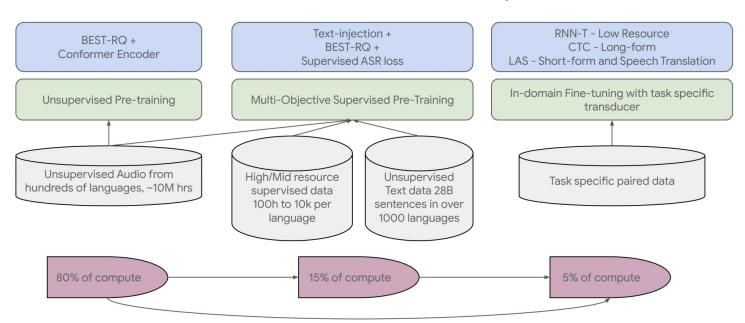
Korean Chinese Japanese

. . .

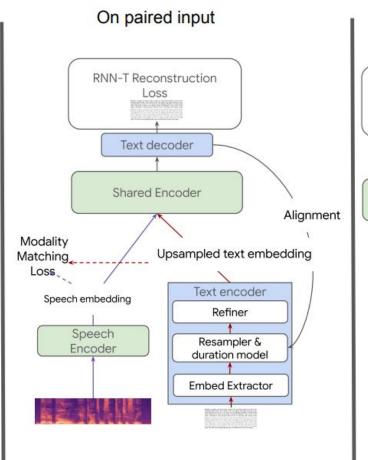


USM: Universal Speech Model

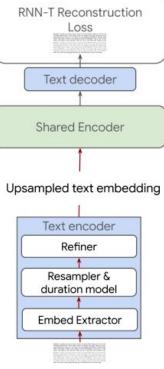
- Pre-train: 12M hours / 300 languages
- Fine-tune: 1/7 of the dataset used in Whisper



On Speech input MLM loss over multiple codewords index random codewords 3 4 87 ... 645 897 21 ... 23 4 237 14 ... 4981 Shared Encoder Speech embedding Speech Tokenization Encoder



On text input



Prior Work (single model)						
Whisper-longform	17.7	27.8	-	23.9	12.8	
Whisper-shortform [†]	82	-	_	13.2 [‡]	11.5	
Our Work (single model)						
USM-LAS	14.4	19.0	29.8	11.2	10.5	
USM-CTC	13.7	18.7	26.7	12.1	10.8	

YouTube

18

en-US

Multilingual Long-form ASR

73

Fine-tune: 1/7 of the dataset used in Whisper

CORAAL

en-US

Multidomain en-US

SpeechStew

en-US

Multilingual ASR

FLEURS

102

62

36.6

12.5 15.5

Task

Dataset

Langauges

Conclusion

- 1. Self-supervised Speech Models as feature extractor
- 2. Speech Large Language Model Generative Al
- 3. Quantization is very important
- How to efficiently use these speech foundation models? (not covered today)
 - a. prompting
 - b. adapters